Apologies for cross-posting
Dear colleagues,
We are excited to announce the program of the GESIS Fall Seminar in Computational Social Science 2023: Join us at the GESIS premises in Mannheim from 11 – 29 September and choose from a variety of introductory and advanced courses on computational social science methods!
The GESIS Fall Seminar targets social scientists, data scientists, and researchers in the digital humanities who want to collect and analyze data from the web, social media, or digital text archives. Its courses are taught by both GESIS and international experts and cover methods and techniques of working with digital behavioral data ("big data"). Participants can pick from nine week-long courses, including introductory courses on Computational Social Science, Web Data Collection, Big Data Management, or Machine Learning, and more specialized topics such as Automated Image and Video Data Analysis, Deep Learning for Advanced Computational Text Analysis, or Network Analysis. Lectures in each course are complemented by hands-on exercises giving participants the opportunity to apply these methods to data. All courses are held in English.
Week 1 (11 – 15 September)
Introduction to Computational Social Science with Rhttps://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0xA28FC9B6141C46659993D16F76CDDC81
Aleksandra Urman, University of Zurich; Max Pellert, University of Mannheim
Introduction to Computational Social Science with Pythonhttps://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x10B7F599A78A430899D69DC39C14F621
Milena Tsvetkova, London School of Economics; Patrick Gildersleve, London School of Economics
Big Data and Computation for Social Data Sciencehttps://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0xAD9B75D7B1924EF280EC288984898493
Akitaka Matsuo, University of Essex; David (Yen-Chieh) Liao, Aarhus University
Week 2 (18 – 22 September)
Automated Web Data Collection with Rhttps://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x72388B266D7A48C98886DFA6C16089BF
Allison Koh, Hertie School of Governance; Hauke Licht, University of Cologne
Automated Web Data Collection with Pythonhttps://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x428CC87C985440C695B86BA777535CB4
Felix Soldner, GESIS Cologne; Jun Sun, GESIS Cologne; Leon Fröhling, GESIS Cologne
Automated Image and Video Data Analysis with Pythonhttps://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x1C221B3409844A5682D4BB6AB53D470D
Andreu Casas, Vrije Universiteit Amsterdam; Felicia Loecherbach, New York University
Week 3 (25 – 29 September)
Social Network Analysis with Rhttps://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0x0E15EE73F46043069631395E0C0190C2
Michał Bojanowski, Kozminski University and Universitat Autònoma de Barcelona
Introduction to Machine Learning for Text Analysis with Pythonhttps://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0xCCF089463A984E93A172700D57DA845F
Damian Trilling, University of Amsterdam; Anne Kroon, University of Amsterdam
From Embeddings to Transformers: Advanced Text Analysis with Pythonhttps://training.gesis.org/?site=pDetails&child=full&pID=0x4693CE99CF9F4C0FB26F47EA79E611BA&subID=0xA07F19FB18CA4F1D8E2DED9DECDE8685
Hauke Licht, University of Cologne; Jennifer Victoria Scurrell, ETH Zurich
For those without any prior experience in R or Python and those who’d like a refresher, we’re additionally offering two pre-courses, “Introduction to Rhttps://training.gesis.org/?site=pDetails&child=full&pID=0x6CA4A250062240A1A6BED0FCABC77F76” and “Introduction to Pythonhttps://training.gesis.org/?site=pDetails&child=full&pID=0x7FEDC6C590644569BB73AC13AE1CD933” (three days, online) in the week before the start of the Fall Seminar.
All courses are stand-alone and can be booked separately – feel free to mix and match to build your own personal Fall Seminar experience that perfectly suits your needs and interests. There is no registration deadline, but places are limited and allocated on a first-come, first-served basis. To secure a place in the course(s) of your choice, we strongly recommend that you register early.
Thanks to our cooperation with the a.r.t.e.s. Graduate School for the Humanities at the University of Cologne, participants of the GESIS Fall Seminar can obtain 2 ECTS credit points per one-week course.
For detailed course descriptions and registration, please visit our websitehttps://www.gesis.org/en/gesis-training/what-we-offer/fall-seminar-in-computational-social-science and sign up herehttps://training.gesis.org/?query=%20AND%20%20AND%20Fall%20Seminar%20AND%20%20AND%20%20AND%20%20AND%20!
We also regularly offer courses on computational social science, programming, and digital behavioral data in our workshop programhttps://training.gesis.org/?site=pOverview&cat=Workshop (many of them online). Upcoming workshops, for example, include Advanced R Programminghttps://training.gesis.org/?site=pDetails&child=full&pID=0x61D72CBE8F0E439DA97FAC6D072A6447, Automated Reports & Co with Quarto and Markdownhttps://training.gesis.org/?site=pDetails&child=full&pID=0x8298CEAADF6C457B8FBE9EE3FC092E47, Interactive Data Analysis with Shinyhttps://training.gesis.org/?site=pDetails&child=full&pID=0x0D17F8F738B14E0991504DBF8823A002, and Social Media-Based Field Experimentshttps://training.gesis.org/?site=pDetails&child=full&pID=0xACEC1E11C9DB4992BC5E06F3A76AD509.
Thank you for forwarding this announcement to other interested parties.
Best wishes
The GESIS Fall Seminar team
GESIS - Leibniz-Institute for the Social Sciences GESIS Fall Seminar in Computational Social Science
email: fallseminar@gesis.orgmailto:fallseminar@gesis.org
web: www.gesis.org/fallseminarhttp://www.gesis.org/fallseminar
facebook: https://www.facebook.com/GESISTraining
twitter: https://twitter.com/gesistraining